Nathan Day Nan
 The Complete Mathematics Conference
 Nathan Day
 Nathan Day
 Nathan Day
 Nathan Day
 Don't Stop
 Interweavin' (Hold On
 to That Feelin')

\qquad
\qquad

410
A15

What is the mathematical water our pupils are swimming through?

What is the mathematical water our pupils are swimming through?

The Depth

What is the mathematical water our pupils are swimming through?

The Depth

The Logicalness
The Beauty

Maths should be less magical.

What is the mathematical water our pupils are swimming through?

The Depth

Maths should feel like Game of Thrones. Not Friends.

Teaching for Mastery

What?

Interweaving:

Using questions and tasks that bring together multiple different topics from across mathematics.

Why?

1 - Connections

2 - Retrieval

$$
3 \text { - Depth }
$$

4 - Challenge

5 - Purpose

19 There are n sweets in a bag. 6 of the sweets are orange.
The rest of the sweets are yellow.
Hannah takes at random a sweet from the bag. She eats the sweet.

Hannah then takes at random another sweet from the bag. She eats the sweet.
The probability that Hannah eats two orange sweets is $\frac{1}{3}$
(a) Show that $n^{2}-n-90=0$
(b) Solve $n^{2}-n-90=0$ to find the value of n.

(6 - The Hannah Questions)

Who? When?

Year 7 Transition
Year 11 Revision
Year 12 Consolidation

How?

Introducing Interweaving

How?

Inputs
Processes

Contexts

How?

Inputs
Processes
Contexts

Fractions
Surds
Standard Form

How?

Inputs	Processes
Fractions	Equations
Surds	Ratios
Standard Form	Sequences

Contexts

How?

Inputs
Fractions
Surds
Standard Form

Processes

Equations
Ratios
Sequences

Contexts

Geometry
Averages
Rounding

How?

Inputs

Fractions
Surds
Standard Form

Processes

Equations
Ratios
Sequences

Contexts

Geometry
Averages
Rounding

How?

Inputs	Processes	Contexts
	Equations	Geometry
Fractions	Ratios	Averages
Surds	Sequences	Rounding

An irrational amount of money is shared in the ratio $2: 3: 7$. The mean amount shared is $£ \sqrt{128}$. What is the size of the smallest share?

How?

Inputs	Processes	Contexts
	Equations	Geometry
Fractions	Ratios	Averages
Surds	Sequences	Rounding

The first two terms of an arithmetic sequence are 4×10^{-3} and 4.4×10^{-3}. Find the position of the first term in the sequence that rounds to 3 to the nearest whole number.

Considerations

- Overcoming novelty
- Avoiding chaining
- Giving structure

Interweave this question.

4

Prime Factorisation!

$3 x-4$| $5 x-2$ |
| :---: |
| $4 x$ |

a and b are randomly chosen integers from 1 to 9.
Probability c greater than 5 ?

Interweave this question.

Solve

$$
3 x+5=17
$$

Solving Linear Equations...

...with Fractions
...with Decimals
...with Standard Form
...with Surds
...with Brackets
...with Substitution
...with Rounding
...from Indices
...from Areas
...from Perimeters
...from Percentages
...from Ratio
...from Probability
...from Sequences
...from Angle Sums
...from Parallel Lines
...from Circle Theorems
...from Similar Shapes
...from Averages
...from Functions
...from?

Solving Linear Equations with... Standard Form

1) $x+3 \times 10^{6}=5 \times 10^{6}$
2) $0.7 x+3.3 \times 10^{6}=5.4 \times 10^{6}$
3) $1.3 x-3.7 \times 10^{-3}=5.4 \times 10^{-3}$
4) $\left(2.3 \times 10^{3}\right) x=9.2 \times 10^{-5}$
5) $\left(6.1 \times 10^{11}\right) x=8 \times 10^{6}-\left(3.5 \times 10^{11}\right) x$
6) $3 \times 10^{-2}+5 x=3 x+8 \times 10^{-2}$
7) $\left(3 \times 10^{-2}\right) x+5=3+\left(8 \times 10^{-2}\right) x$
8) $8 x+2.6 \times 10^{8}=12 x+1.2 \times 10^{8}$
9) $x+3 \times 10^{5}=5 \times 10^{6}$
10) $0.7 x-1.1 \times 10^{4}=5.4 \times 10^{6}$
11) $1.3 x+5.3 \times 10^{-4}=9 \times 10^{-7}$
12) $\left(9.2 \times 10^{3}\right) x=2.3 \times 10^{-5}$
13) $\left(1.2 \times 10^{11}\right) x=8 \times 10^{6}-\left(5 \times 10^{9}\right) x$
14) $3 \times 10^{-2}+5 x=3 x+8 \times 10^{-3}$
15) $\left(2 \times 10^{-2}\right) x-7=11+\left(8 \times 10^{-3}\right) x$
16) $11 x+2.4 \times 10^{8}=1.2 \times 10^{12}-13 x$

Solving Trig Equations with...

The Factor Theorem

Solve each equation in the given region:
Round answers to 1 decimal place, where appropriate.

1) $6 \sin ^{3} x-5 \sin ^{2} x-3 \sin x+2=0$, for $0^{\circ} \leq x<360^{\circ}$,
2) $\mathbf{1 2} \cos ^{4} x-\cos ^{3} x-18 \cos ^{2} x+\cos x+6=0$, for $-180^{\circ} \leq x<180^{\circ}$,
3) $6 \tan ^{5} x+35 \tan ^{4} x+62 \tan ^{3} x+35 \tan ^{2} x+6 \tan x=0$, for $0^{\circ} \leq x<180^{\circ}$.
4) $2 \cos ^{3} x+3 \sin ^{2} x-8 \cos x-6=0$, for $0^{\circ} \leq x<720^{\circ}$,
5) $-3 \sin (x) \cos ^{2} x+11 \sin ^{2} x-16 \sin x+5=0$, for $-360^{\circ} \leq x<360^{\circ}$,
6) $\tan (x) \sin ^{2} x-3 \sin ^{2} x-10 \sin (x) \cos x+24 \cos ^{2} \boldsymbol{x}=0$, for $-360^{\circ} \leq x<0^{\circ}$.
7) $6 \sin ^{4} 2 x-5 \sin ^{3} 2 x-14 \sin ^{2} 2 x-\sin 2 x+2=0$, for $0^{\circ} \leq x<180^{\circ}$,
8) $5 \cos ^{5} 3 x-19 \cos ^{4} 3 x-9 \cos ^{3} 3 x+79 \cos ^{2} 3 x-44 \cos 3 x-12=0$, for $0^{\circ} \leq x<120^{\circ}$,
9) $\tan ^{4}(4 x+5)-27 \tan ^{2}(4 x+5)-14 \tan (4 x+5)+120=0$, for $0^{\circ} \leq x<90^{\circ}$.

Investigation into...
 Factors and Volumes

With 12 cubes, you can make 4 different cuboids:

12 has 4 non-prime factors: $1,4,6$, and 12 .
12 has the same number of non-prime factors as there are cuboids made from 12 cubes.

Investigation prompts:

a) How many cuboids can be made from 16 cubes? How many non-prime factors does 16 have?
b) Find numbers of cubes that can be made into exactly:
i) 1 cuboid
ii) 2 cuboids
iii) 3 cuboids
iv) 5 cuboids
v) 6 cuboids

How many non-prime factors do each of your answers have?
c) Is it always true that the number of non-prime factors is equal to the number of possible cuboids?
interwovenmaths.com

1) Try the questions first
2) Model carefully
3) Be selective
4) Adapt and improve!

Interwoven Maths

Investigation into Factors and Volumes
$\frac{\text { Menvenventasem }}{1 \text { Investigation into... Factors and Volumes }}$

In today's Year 8 lesson I discovered a startling fact: the number of cuboids you can make from n cubes is equal to the number..

Rounding with..

 Polygons

This brilliant task shared by Stephen Gregory (@ALPMaths) feels like the spiritual successor to Sam Blatherwick's wonderful task Using Ratios to Find Angles. I really...

L-shapes with Fractions

This is my second post inspired by Jo Morgan's video about using the KS2 curriculum to inform Year 7 teaching, available here. This task
looks...

Using Ratios to Find Angles

This fantastic task kindly shared by

