Pythagoras and Trigonometry with...Similar Shapes

$A B$	10 cm
$B C$	6 cm
$A C$	
Area of $A B C$	

AE	25 cm
DE	
AD	
Area of ADE	

BE	
CD	
Area of BCDE	
Area of ABD	

BD	
CE	
Area of DCE	
Area of DBE	

Perimeter ABC	
Perimeter AED	
Perimeter BCDE	
Perimeter ABD	

AB	
BC	7 cm
AC	
Area of ABC	

AE	
DE	
AD	
Area of ADE	

BE	
CD	24 cm
Area of BCDE	$252 \mathrm{~cm}^{2}$
Area of ABD	

BD	
CE	
Area of DCE	
Area of DBE	

Perimeter ABC	
Perimeter AED	
Perimeter BCDE	
Perimeter ABD	

Angle BÂC	
Angle BÊD	
Angle C仓̂E	
Angle AB̂D	

AB	
BC	
AC	
Area of ABC	

AE	68 cm
DE	
AD	60 cm
Area of ADE	

BE	
CD	
Area of BCDE	
Area of ABD	

BD	
CE	
Area of DCE	
Area of DBE	

Perimeter ABC	40 cm
Perimeter AED	
Perimeter BCDE	
Perimeter ABD	

Angle BÂC	
Angle BÊD	
Angle C $\widehat{B E}$	
Angle A $\widehat{\mathrm{BD}}$	

InterwovenMaths.com

Pythag and Trig with...
 Similar Shapes

$A B$	10 cm
BC	6 cm
AC	8 cm
Area of ABC	$24 \mathrm{~cm}^{2}$

BE	15 cm
CD	12 cm
Area of BCDE	$126 \mathrm{~cm}^{2}$
Area of $A B D$	$60 \mathrm{~cm}^{2}$

AE	25 cm
DE	15 cm
AD	20 cm
Area of ADE	$150 \mathrm{~cm}^{2}$

BD	13.4 cm
CE	19.2 cm
Area of DCE	$90 \mathrm{~cm}^{2}$
Area of DBE	$90 \mathrm{~cm}^{2}$

Perimeter ABC	24 cm	Angle BÂC	36.9°
Perimeter AED	60 cm	Angle BÊD	53.1°
Perimeter BCDE	48 cm	Angle C $\widehat{\text { B E }}$	126.9°
Perimeter ABD	43.4 cm	Angle ABD	116.6°

AB	25 cm
BC	7 cm
AC	24 cm
Area of ABC	$84 \mathrm{~cm}^{2}$

BE	25 cm
CD	24 cm
Area of BCDE	$252 \mathrm{~cm}^{2}$
Area of ABD	$168 \mathrm{~cm}^{2}$

AE	50 cm
DE	14 cm
AD	48 cm
Area of ADE	$336 \mathrm{~cm}^{2}$

BD	25 cm
CE	27.8 cm
Area of DCE	$168 \mathrm{~cm}^{2}$
Area of DBE	$168 \mathrm{~cm}^{2}$

Perimeter ABC	56 cm
Perimeter AED	112 cm
Perimeter BCDE	70 cm
Perimeter ABD	98 cm

Angle $B \hat{A} C$	16.3°
Angle BÊD	73.7°
Angle Ĉ̂E	106.3°
Angle Â̂D	147.5°

AB	17 cm
BC	8 cm
AC	15 cm
Area of ABC	$60 \mathrm{~cm}^{2}$

AE	68 cm
DE	32 cm
AD	60 cm
Area of ADE	$960 \mathrm{~cm}^{2}$

BE	51 cm
CD	45 cm
Area of cCDE	$900 \mathrm{~cm}^{2}$
Area of ABD	$240 \mathrm{~cm}^{2}$

BD	45.7 cm
CE	55.2 cm
Area of DCE	$720 \mathrm{~cm}^{2}$
Area of DBE	$720 \mathrm{~cm}^{2}$

Perimeter ABC	40 cm
Perimeter AED	160 cm
Perimeter BCDE	136 cm
Perimeter ABD	122.7 cm

Angle BÂC	28.1°
Angle BÊD	61.9°
Angle Cß̂E	118.1°
Angle Aß̂D	108.0°

Pythagorean Areas with... Similar Shapes

BC	15 cm
CA	20 cm
AB	25 cm

AD	
DB	
CD	

Area of ABC	
Area of ACD	
Area of CBD	

Ratio of hypotenuses of each triangle		
$\quad a \mathrm{~cm}$		
CA	$b \mathrm{~cm}$	
AB	$c \mathrm{~cm}$	

AD	
DB	
$C D$	

Area of ABC	
Area of CAD	
Area of BCD	

EA	$a \mathrm{~cm}$
AB	$b \mathrm{~cm}$
BE	$c \mathrm{~cm}$
Area of ABE	
Area of BCD	
Area of BDE	

Pythagorean Areas with... Similar Shapes

Show that triangles $\mathrm{ABC}, \mathrm{ACD}$ and CBD are similar.

Angles $C \widehat{A} D$ and $A \widehat{B} C$ sum to 90°. So do angles C $\widehat{A D}$ and D $\widehat{C} A$.

Therefore, $\mathbf{A} \widehat{\mathbf{B}} \mathbf{C}=\mathbf{D} \mathbf{C} \mathbf{A}$. Similarly, $\mathbf{C} \widehat{\mathbf{A}} \mathbf{B}=\mathbf{B} \hat{\mathbf{C}} \mathbf{D}$.
All three triangles have the same angles, and are therefore similar.

Ratio of hypotenuses of each triangle	
BC	$a \mathrm{~cm}$
CA	$b \mathrm{~cm}$
AB	$c \mathrm{~cm}$

AD	16 cm
DB	9 cm
CD	12 cm

Area of ABC	$150 \mathrm{~cm}^{2}$
Area of ACD	$96 \mathrm{~cm}^{2}$
Area of CBD	$54 \mathrm{~cm}^{2}$

BC	15 cm
CA	20 cm
AB	25 cm

$3: 4: 5$

EA	6 cm
AB	8 cm
BE	10 cm
Area of ABE	$24 \mathrm{~cm}^{2}$
Area of BCD	$24 \mathrm{~cm}^{2}$
Area of BDE	$50 \mathrm{~cm}^{2}$

Area of trapezium ACDE (two methods)	
$\frac{1}{2}(\mathrm{EA}+\mathrm{DC}) \times \mathrm{AC}$	$\overbrace{\mathrm{ABE}}^{\mathrm{Area}}+\mathrm{BCD}+\mathrm{BDE}$
$=\frac{1}{2}(6+8) \times 14$	$=24+24+50$
$=98 \mathrm{~cm}^{2}$	$=98 \mathrm{~cm}^{2}$

EA	$a \mathrm{~cm}$
AB	$b \mathrm{~cm}$
BE	$c \mathrm{~cm}$
Area of ABE	$\frac{a b}{2}$
Area of BCD	$\frac{a b}{2}$
Area of BDE	$\frac{c^{2}}{2}$

Area of trapezium ACDE (two methods)	
$\frac{1}{2}(\mathrm{EA}+\mathrm{DC}) \times \mathrm{AC}$	$\overbrace{\mathrm{ABE}}^{\mathrm{Area}}+\mathrm{BCD}+\mathrm{BDE}$
$=\frac{1}{2}(a+b)(a+b)$	$=\frac{a b}{2}+\frac{a b}{2}+\frac{c^{2}}{2}$
$=\frac{1}{2}\left(a^{2}+b^{2}+2 a b\right)$	$=\frac{1}{2}\left(c^{2}+2 a b\right)$

